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Parallel reliability-guided algorithm for digital 
image correlation

Digital image correlation is a non-contact optical method for measuring the displacement and strain on the surface of a 
material. The existing reliability-guided digital image correlation (RG-DIC) method is stable and reliable for a single image 

but it still needs a large calculational resource for a sequence of images. Due to the decorrelation e�ect, the reference 
image must be replaced several times to correct the measurement results for an image sequence involving a large 

deformation or a discontinuous deformation. Since the process must be executed sequentially, image by image, the total 
time required is often unacceptably large when the image sequence is long. The challenge is to �nd a way of improving 

the speed while retaining calculational reliability and measurement accuracy, which are important for the practical 
application of DIC. To address this problem, an improved method is proposed in this paper. The parallel bottleneck caused 

by the decorrelation e�ect is solved through improving the parallelism to increase the processing speed. This approach 
can be used to calculate the strain �eld of the surface of the material in cases of discontinuous deformation, such as in the 

area near to a crack. Compared with existing methods, this method not only retains the calculational reliability but also 
greatly improves calculation speed, especially on current multi-core computing platforms.

Zhe Lin, Tian Cai and Yanfeng Wang

1. Introduction
Digital image correlation (DIC) has been widely used for measuring 
the displacement and strain on solid surfaces since 1980[1]. It is 
an important experimental non-contact optical method used 
to monitor specimen deformation. In practice, DIC is used to 
measure the displacement and strain of the surface of a specimen 
during the loading process, in order to study the mechanical 
properties and failure law of the material. DIC has been applied to 
various materials, including heterogeneous materials[2], biological 
materials[3], wood[4], shape memory alloys[5], ceramics[6], stone[7], 
foam plastics[8], etc.

In general, a �xed digital camera takes photographs of the 
same specimen surface twice at the moments just before and a�er 
specimen deformation. �e two images are called the reference 
image and the deformed image, respectively. �ey are processed 
by a computer algorithm to determine the relative displacement at 
every point on the surface. 

Over the past 30 years, a great e�ort has been made to improve the 
accuracy and e�ciency of DIC. For example, Schreier et al[9] achieved 
a measurement accuracy of 0.01 pixels by using higher-order spline 
interpolation functions. �ey also analysed the systematic errors that 
arise from the use of under-matched shape functions and investigated 
second-order shape functions in the matching process for non-
uniform strain �elds[10]. Cheng et al[11] presented an e�cient, accurate 
and robust framework in which a uniform parametric B-spline surface 
function was used. By iterative optimisation, the unknown two-
dimensional deformation �eld of the entire specimen surface area was 
obtained. Moreover, many studies on the search procedure[12,13], the 
correlation approach[14,15] and the registration method[16-19] have been  
reported.

�e existing reliability-guided digital image correlation  
(RG-DIC) method proposed by Pan[20] is a stable and reliable 
method, but it still takes too much time when processing a sequence 
of images. In order to further improve the e�ciency of the method, 
this paper proposes a parallel RG-DIC algorithm. Compared with 
the existing methods, it not only retains the calculational reliability, 

but also greatly improves the calculation speed. It is also suitable for 
making full use of multi-core computing platforms to improve the 
processing e�ciency of DIC.

2. Overview of digital image 
correlation

To obtain the full-�eld displacements, the �rst major task is to 
identify every point on the surface of the specimen. Usually, random 
speckle patterns are sprayed onto the surface of the specimen to 
ensure that the regions surrounding each point di�erent from each 
other. As the specimen deforms, every region deforms as well. 

In order to calculate the relative displacement at each point on 
the surface of the specimen, for each point of the deformed image 
the unique corresponding point is searched for in the reference 
image. Local characteristics of the surface of the specimen are used 
to determine the corresponding relationship between a pair of points. 
A subset with enough grey variation is chosen for each point in the 
reference image. �en, according to the prede�ned correlation criteria, 
an optimisation algorithm is used to �nd the most relevant subset in 
the deformed image. If the two subsets match successfully, the relative 
displacements of their central points constitute the displacement 
vector. As illustrated in Figure 1, the subset is chosen for the point 
in the deformed image and the corresponding point is tracked in the 
reference image according to grey intensity information.
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In the subset, it is assumed that deformation is uniformly 
distributed, ie the displacement of points varies linearly in both 
horizontal and vertical directions, as mathematically described by 
the sharp function, as shown in Equation (1):
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where xPQ and yPQ are the distances from the point P to the subset 
centre Q in the horizontal and vertical directions, respectively. 
Using a �rst-order Taylor expansion, Equation (2) is obtained:
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where xrefQ
 and yrefQ

 represent the coordinates of Q in the reference 
image, xrefP

 and yrefP
 represent the coordinates of P in the reference 

image, xcurP
 and ycurP

 represent the coordinates of P in the deformed 
image and u and v are the displacements of Q in the x-direction and 
y-direction, respectively. �eir partial derivatives are denoted by 
∂u

∂x
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. �e aim of DIC analysis is to �nd the optimal 
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To evaluate the correlation between a (2M + 1) × (2M + 1) subset 
in the deformed image g ′x

i
, ′y

j( ) and another one in the reference 
image f(xi, yj), a correlation criterion is needed. 

Many di�erent correlation criteria have been reported in the 
literature, such as zero-mean cross-correlation (ZNCC)[20,21]:
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and least squares (LS)[22,23]:
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Based on Equations (2), (3) and (4), for every point an iterative 
optimisation algorithm, for example forward-additive Newton-
Raphson (FA-NR)[24,25] or inverse compositional Gauss-Newton 

(IC-NG)[26,27], is employed to �nd the optimal value of !p to 
maximise CZNCC or minimise CLS.

3. Parallel reliability-guided 
algorithm

3.1 Reliability-guided algorithm
�e pointwise scanning strategy, which is used by traditional DIC 
algorithms based on subsets, is di�cult to use for specimens with 
geometric discontinuities or discontinuous deformation on the 
surface. In addition, it cannot accurately calculate boundary points 
since the subset around each boundary point contains unnecessary 
pixels, for example background pixels. To address the problem, 
Pan[20] proposed RG-DIC, which has two main features.

�e RG-DIC algorithm is di�erent from traditional algorithms, 
which calculate points in line-by-line or column-by-column 
scanning. It uses an adaptive scanning path and computes points 
along the path with high correlation, instead of directly computing 
discontinuous points and boundary points. On the other hand, 
zero-mean normalised sum of squared di�erence (ZNSSD) criteria 
are revised when computing points on the boundary of the region 
of interest (ROI).

�e �owchart of the RG-DIC algorithm is as follows. At 
the beginning, a queue Q is created and initialised to be empty.  
W × H binary matrices Mv and Mc are created, where W and H 
are the width and height of the reference image, respectively. �e 
elements of Mv or Mc correspond to the points of the reference 
image. Every element of Mc is initialised to 0 and marked by 1 if the 
corresponding point has been computed.
l Step 1: Select a seed point (i, j) in the reference image as the 

starting point of the calculation, for which it is easy to �nd the 
corresponding point in the deformed image accurately and 
reliably. Next, the Newton-Raphson (NR) algorithm is used to 
calculate the correlation coe�cient of the seed point, which is 
then inserted into queue Q. Finally, let Mc(i, j) = 1.

l Step 2: Pop the �rst point (represented as xij) of the queue 
Q, which is the point with the current highest correlation 
coe�cient. If the adjacent point (represented as xab) of xij in the 
reference image satis�es:

                                             .................................. (7)

 then the NR algorithm is used to calculate xab for the deformation 
parameters and correlation coe�cient based on the calculation 
result of xij. A�er the calculation, xab is inserted into the queue Q 
corresponding to its correlation coe�cient. Mc(a, b) = 1 is then 
set, since xab has been calculated.

l Step 3: Repeat the above steps until the queue Q is empty.

�e RG-DIC algorithm calculates points according to correlation 
coe�cient values. If a point has a low correlation coe�cient value, 
its adjacent points are inserted into the end of queue Q for later 
calculation.

�e RG-DIC method is robust and suitable for shadowed or 
discontinuous specimen surfaces; however, it still does not perform 
very well for large deformations. When the specimen undergoes 
large deformations, the shapes and positions of the subsets change 

Figure 1. Subset deformation
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dramatically so that the patterns of speckle and texture become 
signi�cantly di�erent. As a result, the level of correlation between 
the corresponding subsets in the reference image and the deformed 
image decreases greatly; this is called the ‘decorrelation e�ect’[21].

3.2 The proposed parallel algorithm
Full-�eld strain measurement requires many calculations since it 
searches for the corresponding point a�er deformation for every 
point of the specimen surface. It is always di�cult to �nd the best 
compromise between computational e�ciency and measurement 
accuracy. Blaber et al[22] used multi-threading to improve the 
RG-DIC algorithm and set multiple seed points. Each thread was 
responsible for a calculation path from a seed point.

As a local iterative optimisation algorithm, the IC-GN 
algorithm needs to select an initial estimated value close enough to 
the true value of the deformation at the beginning of the iteration. 
�erefore, the reliability-guided displacement tracking (RGDT) 
strategy in[20] is guided by the ZNCC coe�cients of the calculated 
points. However, the strategy is path dependent and is implemented 
in a serial manner point by point, which is wasteful and ine�cient 
in modern multi-core computers. �erefore, an improved RGDT 
strategy is proposed in[28], which uses a multi-threaded parallel 
computing method to process multiple pixels in parallel and greatly 
improve the calculation e�ciency.

Although the method proposed in[21] reduces the calculational 
error caused by the decorrelation e�ect, it is implemented to process 
the image sequence serially. When the correlation coe�cient at 
the seed point is below the threshold, the reference image must be 
updated. 

If the reference image is unchanged, the images in the deformed 
image sequence can be calculated respectively and in parallel. 
However, due to the decorrelation e�ect, the reference image 
may sometimes be replaced. �erefore, in order to obtain further 
parallelisation, the deformed image sequence is divided into several 
subsequences without the decorrelation e�ect.

�e proposed algorithm preprocesses the image sequence 
quickly to predict the images that cause the decorrelation e�ect, 
rather than updating the reference images in the calculation 
process. �e same correlation criterion CLS as that used in[22] is used 
for comparison. �e reference image of every deformed image is 
determined in advance and the original image sequence is divided 
into several subsequences, each of which has its own reference 
image, so that all subsequences can be processed in parallel. �e 
detailed process of the algorithm is described as follows:
l Step 1: Divide the sequence of images. 
 Firstly, the last image of the sequence is calculated. 
 �en, if the correlation coe�cient at the seed point is smaller 

than a threshold value (0.8 in this case), which implies no 
decorrelation e�ect in the sequence of images, all of the 
deformed images can be processed in parallel, as in Step 3.

  Otherwise, if the correlation coe�cient at the seed point is 
equal to or larger than the threshold value, a binary search 
algorithm is employed to divide the sequence of images into two 
subsequences of equal length.

 �e binary division process is described as follows:
 De�ne T = {In=1, 2, …, N}, which denotes the image sequence with 

length N.
 De�ne the function:
                                           .......................... (8)
 where £(It, Ir, sx, sy) represents the correlation coe�cient at the 

point (sx, sy), referring to the deformed image It and the reference 
image Ir.
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 Assuming that �(T) > θ, the sequence of images T is divided 
into two subsequences of equal length: 

                                ..................... (12)

 where T1 and T2 are the subsequences of T:

                                            T
1
= I

n=1,2,É,
N

2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 .................................. (13)

                                        T
2
= I

n=
N

2
+1,

N

2
+2,É,N

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 ............................ (14)

 If the binary division process is repeated p times, it can be 
described as: 
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where p ∈ Z+.
 If p0 is the minimum p that satis�es:

                                            Ψ p+1 T( ) = Ψ p T( ) .............................. (16)

 then the set of subsequences Ψp0(T) is the �nal result of the 
binary division.

 A �owchart for solving Ψp0(T) is shown in Figure 2.

Figure 2. Recursive division of the sequence of images into 
subsequences
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l Step 2: Take the last image of each subsequence as the reference 
image of the next subsequence. �e displacement �eld of every 
reference image is calculated by the RG-DIC algorithm and then 
accumulated sequentially, as in Equation (17):
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d
j
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d
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 where 
!
d
j
x, y( ) denotes the displacement vector of the jth image 

referring to the original reference image, R(n) denotes the index 
of the reference image of the nth subsequence in the original 
image sequence and 

!
d
j,i
x, y( ) denotes the displacement vector 

of the jth image referring to the ith image.
l Step 3: Calculate the displacement �elds of all remaining 

deformed images in parallel. Every image is processed 
independently without communication with the others. In this 
way, the process can be implemented on a multi-core computing 
platform to make it run faster.

4. Results of trials
4.1 Trial using simulated results
�e proposed method was evaluated on simulated speckle images, 
which were generated by a computer with a size of 512 × 512 pixels, 
as shown in Figure 3. 

Assuming the specimen was subjected to parallel pressure in the 
y-direction, axial compression occurred in the y-direction and axial 
stretching occurred in the x-direction, as shown in Figure 4. �e 
grey box and the dotted frame represent the surface of the specimen 
before and a�er deformation, respectively. �e Poisson ratio of the 
material was assumed to be 0.2. �e displacement parameters of the 
specimen were assumed to be: ux = 0.02, vy = −0.1 and uy = vx = 0.

�e change in the speckle image following deformation was 
simulated on the computer. In order to obtain images with large 
deformations, compression of the image was continued to generate a 
sequence of deformed images. �e �rst one was compressed to 70% 
of the original image and the next deformed image was generated 
by further compression of 3%. �en, the same further compression 

process was repeated until ten deformed images were obtained. �e 
image before deformation was regarded as the original reference 
image (the 0th image). Figure 5 shows the reference (undeformed) 
image and the �rst deformed image.

�e seed point was selected at (268, 248), which is indicated 
by the white arrows in Figure 5. �e calculation process using the 
correlation criteria CLS ,which is de�ned by Equation (5), consisted 
of three iterations. �e reference images and correlation coe�cients 
are shown in Table 1.

As can be seen, in the �rst iteration, all the deformed images 
referred to the original reference image. It should be noted that the 
correlation coe�cient increased signi�cantly at the ��h deformed 
image, which indicates the decorrelation e�ect. As a result, in 
the second iteration, the original sequence was divided into two 
subsequences, where the 1st to 4th deformed images composed 
the �rst subsequence, which all referred to the original reference 
image and the correlation coe�cients at the seed point remained 
unchanged; the 5th to 10th deformed images composed the second 
subsequence, which referred to the 4th deformed image and the 

Figure 4. Deformation of the surface of the specimen

Figure 5. Large deformation of the simulated speckle image:  
(a) reference image; and (b) the first simulated image involving 
large deformation

Table 1. Iterative processing of the sequence of images 

Deformed image 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Iteration 1
Reference image 0th 0th 0th 0th 0th 0th 0th 0th 0th 0th

Correlation coe�cient at the seed point 0.137 0.212 0.266 0.276 1.667 1.5 1.519 1.675 1.742 1.651

Iteration 2
Reference image – – – – 4th 4th 4th 4th 4th 4th

Correlation coe�cient at the seed point – – – – 0.11 0.131 0.155 0.156 0.175 1.498

Iteration 3
Reference image – – – – – – – – – 9th

Correlation coe�cient at the seed point – – – – – – – – – 0.13

Figure 3. Simulated digital speckle image

4 Insight • Vol 61 • No 12 • December 2019
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recalculated correlation coe�cients at the seed point were very 
small. �e decorrelation e�ect can still be seen at the 10th image. 
For this reason, in the third iteration, the 10th deformed image 
referred to the 9th image and the correlation coe�cient at the seed 
point was recalculated again. Finally, the displacement vector was 
obtained using Equation (18):
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A�er calculation, the displacement �elds of the �rst and last 
deformed images were obtained, as shown in Figure 6.

�e calculation errors are shown in Table 2. �e errors of the 
calculation results can be seen with respect to the expected values.

4.2 Plate hole ‘DIC challenge’
A sequence of images, showing a plate hole sample from the Society 
for Experimental Mechanics (SEM)’s ‘DIC challenge’, which can 
be downloaded directly at http://www.ncorr.com/download/
sample12.zip, are provided by ncorr.com to be used for testing and 
are taken from a real experiment in which a specimen with a hole 
in the middle is stretched in the y-direction, as shown in Figure 7. 
�e image sequence contains one reference image and 11 deformed 
images. �is sequence was used to evaluate the proposed method.

In order to analyse the calculation process in detail, Point A  
(90, 540) was taken, as shown in Figure 7. �e �nal deformation vector 
!
p = u,v,u

x
,u
y
,v
x
,v
y( )
T

 of the point was obtained a�er ten iterations.
Each iteration consisted of three key steps. Firstly, !p  and Δ !p  

were used to calculate the corresponding relationship of pixels 
between the reference image and the deformed image. �e grey 
values at subpixel positions (represented by g !x +W

!
ξ ;
!
p( )( ) ) 

of the deformed image were obtained by interpolation and then 
Δ
!
p  was calculated by solving the equation ∇C = 0 to minimise 

the correlation coe�cient. Finally, !p  was updated using Δ!p. �e 
process was repeated until the correlation coe�cient converged to a 

Table 2. Calculation errors of the trial using simulated results

u v ux uy vx vy

Expected result 0 0 0.02 0 0 −0.1
Calculation result −0.03820592 −0.08769096 0.02049512 0.0191056 −0.00015962 −0.1036856 

Absolute error −0.03820592 −0.08769096 0.00049512 0.0191056 −0.00015962 −0.0036856 
Relative error – – 2.5% – – 3.7%

Figure 7. Reference image of the plate hole specimen

Figure 6. Displacement fields of the first and last deformed 
images: (a) displacement field of the first deformed image in the 
x-direction; (b) displacement field of the first deformed image in 
the y-direction; (c) displacement field of the last deformed image 
in the x-direction; and (d) displacement field of the last deformed 
image in the y-direction
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global minimum. �e details of C Δ
!
p( ), Δ!p  and !p  in the iterations 

are shown in Tables 3, 4 and 5, respectively.
Finally, the displacement �elds in the x-direction and the 

y-direction of every point are shown in Figure 8.
To verify the reliability, the displacements at every point 

obtained by the proposed method and by the method in[22] were 
compared. Table 6 shows the relative di�erences between the results 
of the two methods. It can be seen that the relative di�erences are all 
within 1%. �e results of the two methods agree closely.

Table 3. Correlation coefficient C Δ
!
p( )  of Point A in the iterations of 

the plate hole ‘DIC challenge’

Iteration

1 0.07596317
2 0.00300894
3 0.00289571
4 0.00289574
5 0.00289573

Table 6. Relative differences between the results of two methods

Deformed 
image

Maximum 
di�erence (%)

Mean 
di�erence (%)

Minimum 
di�erence (%)

1 0.38 0.32 0.27
2 0.51 0.51 0.47
3 0.54 0.53 0.46
4 0.54 0.45 0.42
5 0.68 0.66 0.64
6 0.7 0.66 0.64
7 0.86 0.75 0.66
8 0.97 0.83 0.73
9 0.96 0.84 0.74

10 0.97 0.81 0.77

4.3 Three-point bending test
�e proposed method was also evaluated on a sequence of images 
from a three-point bending test in the materials laboratory of 

Shantou University. �e equipment is shown 
in Figure 9. �e loading equipment is a 
SANS universal testing machine, as shown in  
Figures 9(a) and 9(b), which can apply a 
maximum test force of 100 kg. A Revealer 5F04 
high-speed camera, produced by Hefei Fuhuang 
Junda High-Tech Information Technology Co 
Ltd, was used to photograph the specimen, as 
shown in Figure 9(c). Its frame rate reached  
500 FPS at full resolution (2320 × 1720).

�e experimental steps were as follows:
l Step 1: A concrete specimen with a �at 

surface was selected, the size of which was 
20 cm × 5 cm. �e surface was sprayed 
with white matte paint and then irregular 
black spots were applied. A 2 cm-long 
crack was fabricated in the y-direction 
and in the middle of the x-direction of the 
specimen, as shown in Figure 10.

Figure 8. Displacement fields in the x-direction and in the y-direction of every point of the 
sample used in the plate hole ‘DIC challenge’: (a) displacement field in the x-direction of 
every point of the first deformed image; (b) displacement field in the x-direction of every 
point of the last deformed image; (c) displacement field in the y-direction of every point of 
the first deformed image; and (d) displacement field in the y-direction of every point of the 
last deformed image

Table 4. Δ
!
p  of Point A in the iterations of the plate hole ‘DIC challenge’

Iteration

1 0.03193411 −0.3742756 0.00014554 0.00031882 0.00000056 −0.00031427
2 0.00106199 −0.01501222 −0.00008576 0.00001449 0.0000034 0.00011715
3 0.00006395 0.00021812 −0.00000309 −0.00000376 0.00000399 −0.00000173
4 −0.00000048 −0.00000355 0.00000003 0.00000002 −0.00000011 0.00000004
5 0.00000001 0.00000006 0.00000000 0.00000000 0.00000000 0.00000000

Table 5. 
!
p  of Point A in the iterations of the plate hole ‘DIC challenge’

Iteration

1 −0.03204881 −0.6256067 −0.00014552 −0.00031888 −0.00000056 0.00031437
2 −0.03311574 −0.6105915 −0.00005976 −0.00033333 −0.00000396 0.00019719
3 −0.03317961 −0.6108097 −0.00005667 −0.00032956 −0.00000795 0.00019893
4 −0.03317914 −0.6108061 −0.00005671 −0.00032959 −0.00000784 0.00019889
5 −0.03317915 −0.6108062 −0.00005671 −0.00032958 −0.00000784 0.00019889

C Δ
!
p( )

Δ
!
p

!
p

6 Insight • Vol 61 • No 12 • December 2019



Insight • Vol 61 • No 12 • December 2019                                                                                                                                                            7                                                                                                                                                
                                                         

DIGITAL IMAGE CORRELATION

5. Conclusions
�is paper has presented an improved reliability-guided digital 
image correlation method, in which correlation coe�cients at 
seed points are used to determine the position of the decorrelation 
e�ect and recursively divide the sequence of images into several 
subsequences. Next, a multi-process parallel algorithm is used to 
process the subsequences simultaneously and the �nal calculation 
results are obtained by accumulation. Based on existing methods, 
this method not only uses multi-threading computation to improve 
the pixel-level parallelism when processing an image but it also uses 

multi-process computation to achieve image-
level parallelism.

�e main advantage of this method is that 
it rapidly eliminates the decorrelation e�ect 
inside the sequence of images by recursively 
dividing the image into subsequences. �e 
method can calculate the displacement 
�eld of a material surface subjected to 
large deformation more quickly than other 
methods and is suitable for analysing the 
process of fracture. 

Compared with existing methods, this 
method is not only reliable but also more 
e�cient. It uses multi-core calculations 
to make full use of advanced computing 

resources to improve the processing e�ciency of DIC. In addition, 
the method is compatible with the existing multi-thread acceleration 
method. 

�e following future work is needed to improve the proposed 
method. Firstly, the automatic selection of the best seed point is still 
a problem. �e location of the seed point has a great in�uence on 
the recursive division of the image sequence. �e selection of seed 
points is still performed manually and is the key to the proposed 
method. Automatic selection of the seed points is essential for 
automatic real-time application.

Secondly, the robustness of the proposed method in the outdoor 
environment needs to be improved. Since outdoor light is not stable, 
the images output by a camera will �uctuate signi�cantly and the 
maintenance of the measuring accuracy and reliability of DIC will be 
of practical signi�cance but present a challenge for further research.

Finally, the best method for determining the number of image 
subsequences for a speci�c computing platform needs to be found, 
which is another important factor in achieving optimal overall 
performance.
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