项目四一位数码管的显示控制

陈超然

汕头职业技术学院

目录

- 1. 复习回顾
- 2. 认识数码管
 - 数码管的应用领域
 - 常见的数码管
- 3. 一位数码管显示"0"
 - 一位数码管显示原理
 - 与单片机的接口电路
 - 显示控制的程序设计
- 4. 思考与改进
- 5. 实战作业

做一个单片机项目时,正确的顺序应该是?

- 画电路图、编程、画流程图
- B 画电路图、画流程图、编程
- (二) 编程、画流程图、画电路图
- 画流程图、编程、画电路图

51单片机最小系统包括以下哪些?

- A 电源电路
- B时钟电路
- **复位电路**
- D EA引脚

假设变量a为unsigned char类型,下面哪句赋值语句没有错?

- a = -2;
- a = 256;
- a=255;
- a=3.2;

常用的变量类型							
数据类型	关键字	所占位数	范围				
(有符号)整型	int	16	<i>-</i> 32768 ∼ 32767				
无符号整型	unsigned int	16	$0\sim 65535$				
单精度实型	float	32	$3.4e-38 \sim 3.4e38$				
(有符号)字符型	char	8	-128 ∼ 127				
无符号字符型	unsigned char	8	$0\sim255$				

假设有8个LED灯的正极全部接+5V电源,负极分别接在单片机P2口(从上往下P2.0~P2.7),那么执行完代码P2=0xbf;后可以点亮第几个LED灯(从上往下数)?

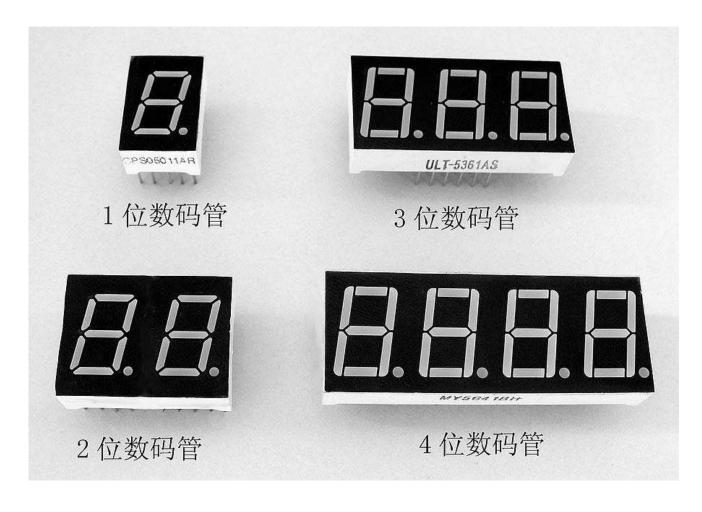
- (A) 2
- B 3
- **c** 6
- 7

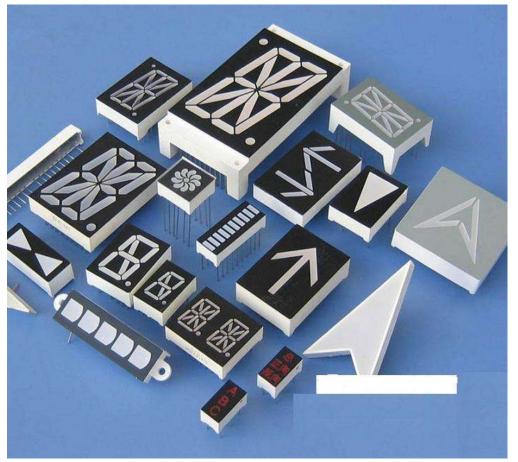
4.2 认识数码管

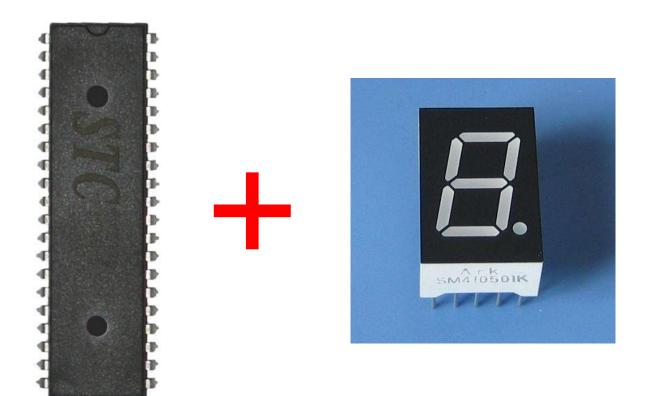
数码管的应用领域

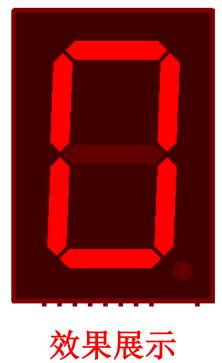
4.2 认识数码管

数码管的应用领域

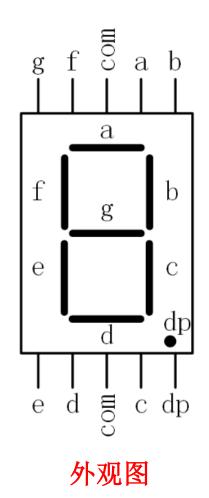


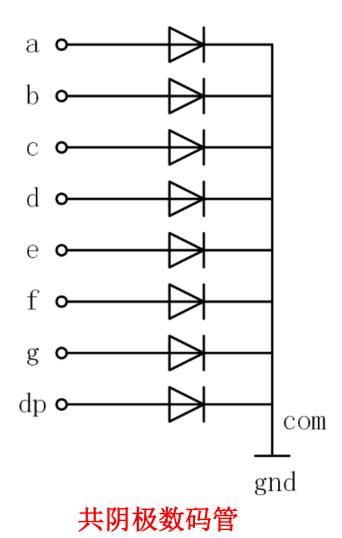


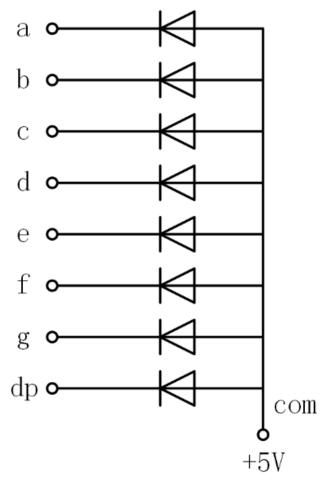



4.2 认识数码管

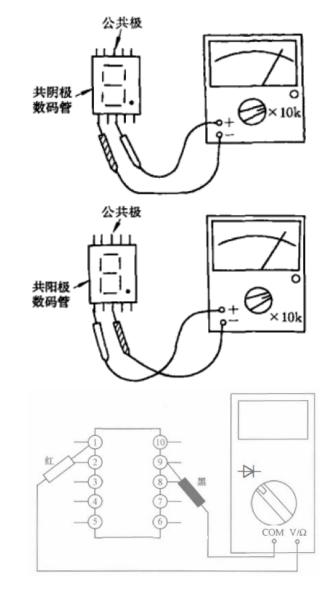
常见的数码管

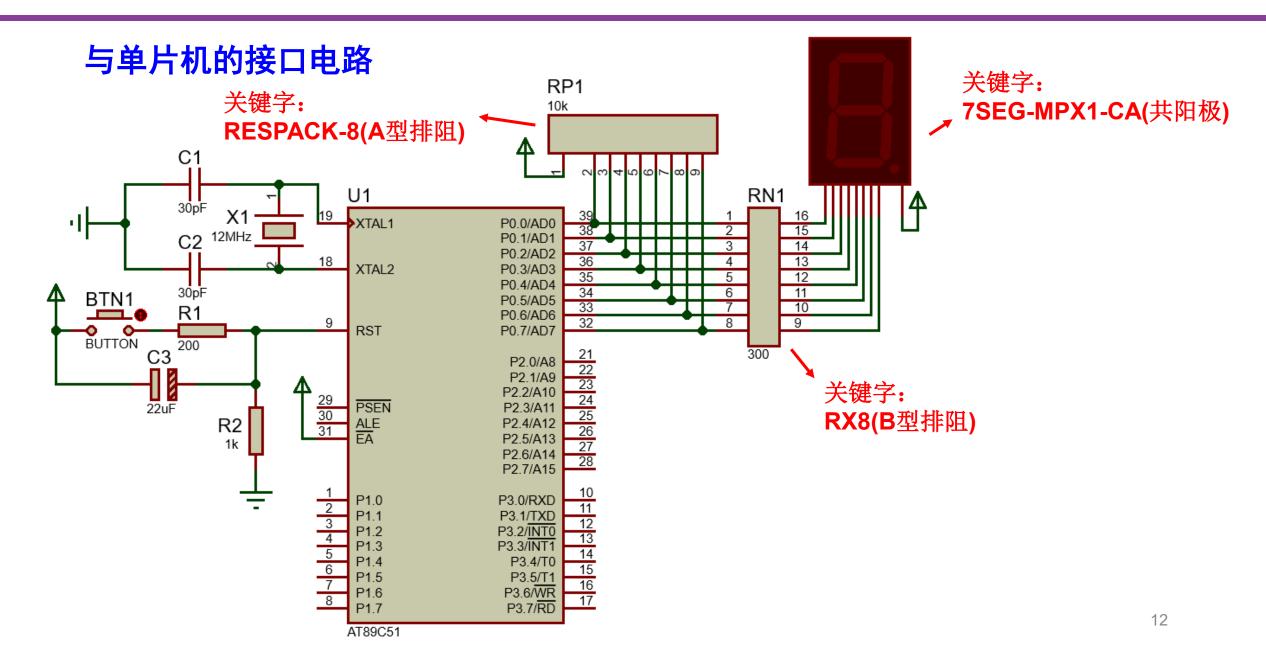


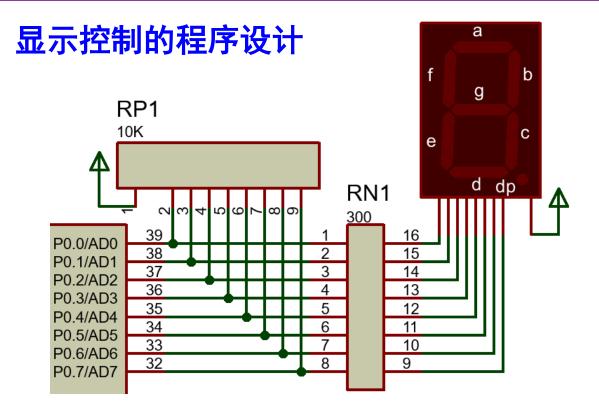




一位数码管显示原理——内部原理图




共阳极数码管


一位数码管显示原理——如何检测数码管

- ① 使用指针万用表(红进黑出): 打到电阻档×10kΩ
- ② 红笔接中间公共引脚(上下均可),黑笔依次接其他脚
- ③ 如果数码管对应段亮了,则证明是共阴极数码管,记录下引脚标号
- ④ 如果黑笔怎么接都不亮,则红黑笔反接,此时数码管对应段亮了,则证明是共阳极数码管,记录下引脚标号,如果还是不亮,证明数码管坏了

若使用数字万用表(红笔接内部电池正极,黑笔接内部电池负极),则打到二极管档或电阻档,且操作与指针万用表完全相反


```
#include <regx51.h>
void main(void)
{
    P0=0xc0;
    while(1);
}
```

字型	dp	g	f	е	d	С	b	а	共阳极字 型码/段码
0	1	1	0	0	0	0	0	0	0xc0
1	1	1	1	1	1	0	0	1	0xf9
2	1	0	1	0	0	1	0	0	0xa4
3	1	0	1	1	0	0	0	0	0xb0
4	1	0	0	1	1	0	0	1	0x99
5	1	0	0	1	0	0	1	0	0x92
6	1	0	0	0	0	0	1	0	0x82
7	1	1	1	1	1	0	0	0	0xf8
8	1	0	0	0	0	0	0	0	0x80
9	1	0	0	1	0	0	0	0	0x90
Α	1	0	0	0	1	0	0	0	0x88
b	1	0	0	0	0	0	1	1	0x83
С	1	1	0	0	0	1	1	0	0xc6
d	1	0	1	0	0	0	0	1	0xa1
E	1	0	0	0	0	1	1	0	0x86
F	1	0	0	0	1	1	1	0	0x8e

4.4 思考与改进

思考: I/0口直接驱动8个LED是否合理?

- 已知: 点亮一个LED的电流大约为5~10mA
- ·以其中一个51单片机芯片手册(AT89C51)为例:

Maximum I_{OI} per port pin: 10 mA

Maximum I_{OI} per 8-bit port: Port 0: 26 mA

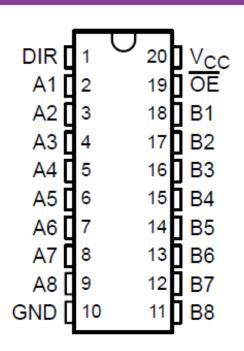
Ports 1, 2, 3: 15 mA

Maximum total I_{OL} for all output pins: 71 mA

- 可知: P0口允许的灌电流最大为26mA P1、P2和P3口允许的灌电流最大为15mA
- 灌电流: 单片机引脚输出低电平时,单片机允许外部电路向其引脚灌入电流,这个电流称为灌电流。
- 因此,应该用I/0口来控制驱动芯片,使驱动芯片去驱动数码管

4.4 思考与改进

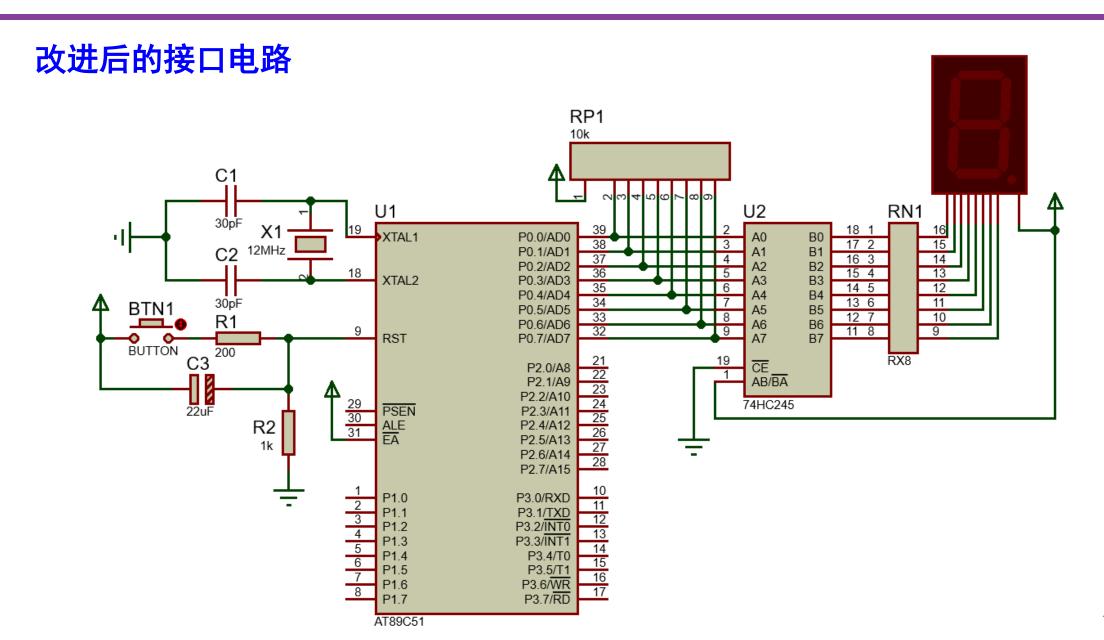
驱动芯片: 74HC245


- 常用的驱动芯片,用来驱动LED灯或其他设备。
- 它是8路同相三态双向缓冲器,可双向传输数据。
- 输出低电平时,允许最大灌电流为24mA 输出高电平时,允许最大拉电流为15mA
- 工作原理:

当 OE=0时,

DIR=0,数据从B传给A(接收)

DIR=1,数据从A传给B(发送)


当OE=1时, A、B均为高阻态。

FUNCTION TABLE

INPUTS		OPERATION	
OE	DIR	OPERATION	
L	L	B data to A bus	
L	Н	A data to B bus	
Н	X	Isolation	

4.4 思考与改进

4.5 实战作业

1. 共阳极单位数码管循环显示0~F(间隔0.5s)

2. 共阴极单位数码管循环显示9~0(间隔0.5s)